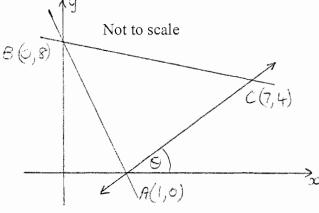
SYDNEY TECHNICAL HIGH SCHOOL MATHEMATICS DEPARTMENT

Year 12 2 Unit HSC Task No 2 March 2002


Name:	 	
Teacher:		

Instructions:

- Show all necessary working
- Full marks may not be awarded for incomplete working or poor setting out.
- Approximate marks are indicated
- Hand in this question paper on top of your answer pages.
- TIME ALLOWED: 70 MINUTES

Question 1	Question 2	Question 3	Question 4	Question 5	Total	
/10	/10	/10	/10	/10		/50

Question 1

The points A,B,C have coordinates (1,0), (0,8) and (7,4) as shown. The angle between line AC and the x-axis is θ .

Copy this diagram onto your Answer page.

a)	Find the gradient of the line AC	1
b)	Calculate the size of θ to the nearest degree.	1
c)	Find the equation of the line AC	2
d)	Show that Δ ABC is isosceles	2
e)	Find the perpendicular distance from B to AC	2
f)	Find the area of Δ ABC	1
g)	Write down the coordinates of a point E such that ABCE is a rhombus	1

Question 2

Give the curve $y = x^3 - 6x^2 + 9x - 5$

- a) Find the stationary points and determine their nature.
- b) Sketch the curve for $x \ge -1$ and find the absolute minimum value.
- c) For what values of x is:
 - (i) $\frac{dy}{dx}$ < 0 (ii) the curve concave up?
- d) Find the equation of the tangent to the curve when x = 0

Question 3

a) The government announces that "while unemployment is currently rising its increase will slow."

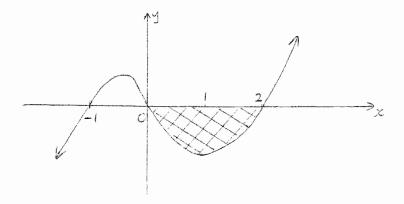
Given a mathematical model y = f(x) for unemployment, what does this statement imply for

2

$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$?

- b) If $\frac{d^2 y}{dx^2} = 6x 4$ and that $\frac{dy}{dx} = 7$ at (1,12), find y as a function of x.
- c) Find $\int (4x-6)^9 dx$.

Farmer Jones wishes to fence off a rectangular yard ABCD of area 1200m^2 , as in the figure above, with the side CD against the property of Farmer Smith. Fencing costs \$3 per metre and Smith has agreed to pay for half the cost of side CD. Let \$C\$ be the cost to Jones of fencing the yard and x metres be the length of BC.

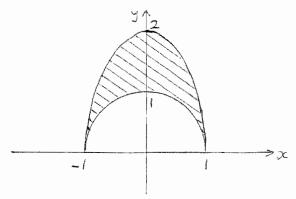

(i) Show that
$$C = 6x + \frac{5400}{x}$$

(ii) Prove that the minimum cost to Jones for fencing the yard is \$360.

Question 4

- a) Evaluate $\int_{0}^{3} \sqrt{x+1} \ dx$
- b) The graph of y = x(x+1)(x-2) is shown.

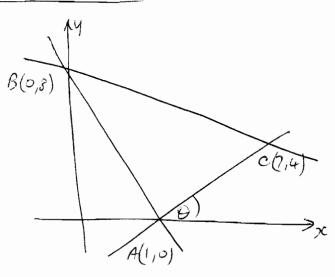
 Find the shaded area



c) Find the area enclosed between the graphs of $y = x^3$ and y = 4x

Question 5

a) Find
$$\int \frac{3x^3 + 2}{x^2} dx$$


- b) A cone is generated by rotating about the y axis the area bounded by the line y = 2x, the y- axis and the line y = 2. Use integral calculus to find the volume of this cone.
- c) The graphs of $y = \sqrt{1 x^2}$ and $y = 2\sqrt{1 x^2}$ are shown below. 5

Find the volume of the resultant solid when the enclosed region shown above is rotated about the x – axis.

Solutions. 211 HSC ASS#2 2002

$$a^{-}M_{AC} = \frac{4-0}{7-1}$$

$$= \frac{2}{3} \bullet$$

$$h$$
) $\tan \theta = \frac{2}{3}$
 $\therefore \theta = 34^{\circ}$ ①

c)
$$y - 0 = \frac{2}{3}(x - 1) O$$

 $y = \frac{2}{3}(x - \frac{2}{3})$

d)
$$AB = \sqrt{8^2 + 1^2}$$

= $\sqrt{65}$ 0

$$BC = \sqrt{5^2 + 4^2}$$

$$= \sqrt{65} \quad \bigcirc$$

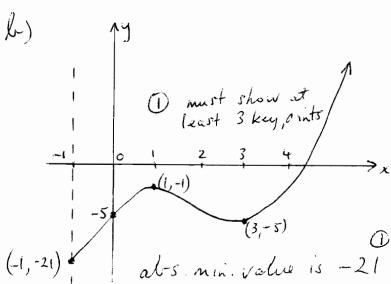
: AABC is isoscoles (2 equal sides)

2)
$$2x-3y-2=0$$
 and $(0,8)$

$$\frac{1}{\sqrt{2^2+3^2}}$$

f) area =
$$\frac{1}{2} \times \sqrt{6^2 + 4^2} \times \frac{26}{\sqrt{13}}$$

= $\frac{1}{2} \times \sqrt{52} \times \frac{26}{\sqrt{12}}$
= $26u^2$ D


Question 2

$$3x^{2}-12x+9=00$$

$$3(x-3)(x-1) = 0$$

×	2.9	3	3-1		x	0.9	1	1.1	
dy	Ì	0	+		dy	+	0	1	ļ
CER	7	/			ar	1	+		\bigcirc
		` /	U	ノ			\		\cdot

...min. T. P. at (3,-5) max T. P. at (1,-1)

c) (i)
$$1 < x < 3$$
 \bigcirc

(ii)
$$d^2y = 0$$
, $6x - 12 = 0$

d) dy =
$$3x^{2} + 12x + 9$$

When $x = 0$, dy = $m_{q} = 9$ 0

i. eq. of tongent at $(0, -5)$

is $y + 5 = 9(x - 0)$

i. $y = 9x - 5$ 0

Question 3

a) dy > 0 and d²y < 0

dx = $3x^{2} - 4x + c$

and $7 = 3 - 4 + c$ (i. $c = 8$) 0

i. $4y = 3x^{2} - 4x + k$

and $12 = 1 - 2 + 8 + k$ (i. $k = 5$)

i. $y = x^{3} - 2x^{2} + 8x + k$

and $12 = 1 - 2 + 8 + k$ (i. $k = 5$)

i. $y = x^{3} - 2x^{2} + 8x + 5$ 0

e) $(4x - 6)^{10} + c = (4x - 6)^{10} + c$
 (0×4)

d) (i) metres of fencing

 $= x + x + \frac{1200}{x} + \frac{600}{x}$
 $= 2x + \frac{1800}{x}$
 $= (2x + \frac{1800}{x}) \times \frac{1200}{x}$

i. $cost + c$ Jones

 $= (2x + \frac{1800}{x}) \times \frac{1200}{x}$

(11) min cost when de =0 dC = 6-5400x = 0 0 $6 - \frac{5400}{2^2} = 0$ 6 = 5400 $1 \cdot 1 \times 2^2 = 5400 = 900$ $\therefore x = 30 (trz enly)$ $\frac{x | 29 | 30 | 31 |}{dC | - | 0 | + | \cdot \cdot}$ $\frac{dC}{dr} = \frac{1}{x - 30m}$ $\frac{dC}{dr} = \frac{1}{x - 30m}$ and cost to Jones is $6 \times 30 - \frac{5400}{30} = 180 + 180$ = 4360 as regd. Question 4 a) $\int_{0}^{3} (x+1)^{\frac{1}{2}} dx = \left[\frac{2}{3}(x+1)^{\frac{3}{2}}\right]^{\frac{3}{2}} 0$ = 3.42-3.12 $=\frac{2}{3}\times8-\frac{2}{3}$ = 4²3. 0 $y = x(x^2-x-2) = x^3-x^2-2x$ $SA = \left(\int_{\alpha}^{2} \left(x^{3} - x^{2} - 2x \right) dx \right) D$ = \[\begin{align*} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{align*} \] = |(4-23-4)-(0-0-0)|

C)
$$x^{3} = 4x$$
 $x^{3} - 4x = 0$
 $x(x^{2} - 4) = 0$
 $x(x+2)(x-2) = 0$
 $x = 0, \pm 2$

The property and shaded areas

 $x = 0, \pm 2$
 $x = 0, \pm 2$

The property areas and shaded areas

 $x = 0, \pm 2$

$$\int_{-8}^{2} (4x - x^{3}) dx = 0$$

$$= 2 \times \left[2x^{2} - 24 \right]_{0}^{2} = 0$$

$$= 2 \times \left[(8 - 4) - (0 - 0) \right]$$

$$= 8 u^{2} = 0$$

Question 5

a)
$$\int \left(\frac{3x^3}{x^2} + \frac{2}{x^2}\right) dx$$

= $\int \left(3x + 2x^{-2}\right) dx$ 0

= $\frac{3x^2}{2} + \frac{2x^{-1}}{-1} + c$

= $\frac{3x^2}{2} - \frac{2}{2} + c$ 0

h)

$$V_{x} = \pi \int_{c}^{2} (\frac{y}{2})^{2} dy \quad \Phi$$

$$= \pi \int_{c}^{2} \frac{y^{2}}{4} dy$$

$$= \pi \times \left[\frac{y^{2}}{12}\right]_{0}^{2} \Phi$$

$$= \pi \times \left[\frac{y^{2}}{12}\right]_{0}^{2} \Phi$$

$$= 2\pi \times \left[\frac{y^{2}}{3}\right]_{0}^{2} \Phi$$

$$= 2\pi \times \left[\frac{y^{2}}{12}\right]_{0}^{2} - \left[\frac{y^{2}}{12}\right]_{0}^{2} + \left[\frac{y^{2}}{12}\right]_{0}^{$$